
The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
Context-aware service engineering: A survey

Georgia M. Kapitsaki a,*, George N. Prezerakos b,1, Nikolaos D. Tselikas c, Iakovos S. Venieris a

a Intelligent Communications and Broadband Networks Laboratory, Dept. of Electrical and Computer Engineering, National Technical University of Athens,
9 Heroon Polytechneioy str, Zografou, 15780 Athens, Greece
b Software and Service Engineering Laboratory, Dept. of Electronic Computing Systems, Technological Education Institute of Piraeus, Petrou Ralli & Thivon 250, 122 44 Athens, Greece
c Dept. of Telecommunications Science and Technology, University of Peloponnese, Karaiskaki Str., 22100 Tripolis, Greece

a r t i c l e i n f o
Article history:
Received 18 April 2008
Received in revised form 15 February 2009
Accepted 21 February 2009
Available online xxxx

Keywords:
Context
Context-awareness
Service engineering
0164-1212/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jss.2009.02.026

* Corresponding author. Tel.: +30 210 772 2551; fa
E-mail addresses: gkapi@icbnet.ntua.gr, georgina.k

saki), prezerak@teipir.gr (G.N. Prezerakos), ntsel@uo
is@cs.ntua.gr (I.S. Venieris).

1 Tel.: +30 210 538 1132; fax: +30 210 538 1260.

Please cite this article in press as: Kapitsak
j.jss.2009.02.026
a b s t r a c t

Context constitutes an essential part of service behaviour, especially when interaction with end-users is
involved. As observed from the literature, context handling in service engineering has been during recent
years a field of intense research, which has produced several interesting approaches. In this paper, we
present research efforts that attempt mainly to decouple context handling from the service logic. We
enumerate all context management categories, but focus on the most appropriate for service engineering,
namely source code level, model-driven and message interception, taking also into account the fact that
these have not been dealt with in detail in other surveys. A representative example is used to illustrate
more precisely how these approaches can be used. Finally, all three categories are compared based on a
number of criteria.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Adaptive, personalized services that take into account location
as well as other user-related data predicate the existence of well-
formed information with respect to user’s environment, referred
to as contextual information or context. Many precise definitions
of context can be found in the literature (Chen and Kotz, 2000;
Schmidt et al., 1999). However, according to the classic definition
by Dey and Abowd (2000), ‘‘Context is any information that can be
used to characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction between
a user and an application, including the user and applications them-
selves”. The techniques that enable the exploitation of contextual
information in services are generally known as ‘‘context handling”
techniques, while the use of context to provide relevant informa-
tion and/or services to the user, where relevancy depends on the
user’s task, is known as ‘‘context-awareness”. Context handling is
of vital importance for developers and service architects, since it
provides dynamic service behaviour, content adaptation and sim-
plicity in usage for the end-user.

For the above reasons, a strong trend in context-aware services
research is clearly visible in the last few years, involving issues like
raw context retrieval from the environment, service design and
ll rights reserved.

x: +30 210 772 1092.
api@gmail.com (G.M. Kapit-
p.gr (N.D. Tselikas), venier-

i, G.M., et al. Context-aware
development, usability studies, etc. The paper approaches con-
text-awareness in services from the viewpoint of service develop-
ers, i.e. it is assumed that context information has been retrieved
from the environment via appropriate mechanisms (e.g. sensors)
and that a basic processing has already been performed. Thus, con-
textual information becomes available by invoking dedicated con-
text providing services, which can be combined with service
engineering techniques, where service engineering can be defined
as the specialization of software engineering that targets the devel-
opment of applications for consumption by end-users. More specif-
ically, we are interested in service development strategies that
allow the decoupling of context handling from the core service lo-
gic, since this approach leads to simpler software process models
especially in the stages of design and code writing for context-
aware services. The survey serves as a comprehensive presentation
towards the research community regarding the state of the art on
interesting methodologies in context-aware service engineering.
Moreover, it can be used as a reference for anyone interested in
designing and creating such services with a focus on the end-user
and can assist developers in choosing among the potential solu-
tions the approach that best suits their development objectives.

The paper is structured as follows. Section 2 lists the context
management categories and Section 3 introduces a reference sce-
nario for the rest of the paper. Section 4 is dedicated to source code
level approaches for context-aware service engineering, whereas
Section 5 presents model-based approaches and corresponding
context models. Message interception approaches are described
in Section 6. Section 7 hosts a comparison of the presented ap-
proaches and finally Section 8 concludes the paper.
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/

mailto:gkapi@icbnet.ntua.gr
mailto:georgina.kapi@gmail.com
mailto:prezerak@teipir.gr
mailto:ntsel@uop.gr
mailto:venieris@cs.ntua.gr
mailto:venieris@cs.ntua.gr
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


2 G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
2. Categories of context solutions

During our survey we have considered a variety of solutions
to context-aware service engineering proposed by different
researchers and developers and tried to distinguish the main ten-
dencies in regard with programming paradigms, development pat-
terns and mechanisms proposed. Based on this, the approaches can
be roughly divided in the following categories:

(1) Middleware solutions and dedicated service platforms.
(2) Use of ontologies.
(3) Rule-based reasoning.
(4) Source code level programming/language extensions.
(5) Model-driven approaches.
(6) Message interception.

There are, however, generic cases where more than one para-
digms or patterns are used together in the same approach (e.g. pol-
icies and rule enforcement may be included in a service platform).
Hence, the above approaches are not completely disjoint and a po-
tential developer may opt for a combination of several techniques,
in order to handle context. Moreover, such a categorization poses
the additional issue of the system architecture that will be re-
quired, in order to support the operation of the service. We chose
not to deal with this question and to ignore the distinct architec-
tural layers involved in service provision by focusing on business
logic adaptation itself and not on the supporting system. At the
heart of every context-aware service, relevant business logic has
to be executed in one or more nodes and this logic has to be
adapted to context changes. Our interest lies in design and devel-
opment approaches that facilitate business logic adaptation, espe-
cially by decoupling the service logic from the context handling
layer.

According to this line of thought, in this survey we focus on
the last three approaches since they provide design and develop-
ment techniques that allow developers to separate the service
logic from the context handling layer. Context-aware services
that have been developed in this manner can be built on top
of dedicated platform solutions or be combined with rule
engines; therefore, the selected approaches do not preclude the
use of additional approaches from the above list resulting in hy-
brid approaches. In some cases, the approaches in question fol-
low the Web Service (WS) technologies; this is expected
because of WS being a popular trend in the service domain.
Furthermore, we concentrate mostly on server-side solutions;
therefore, in the majority of the presented approaches herein
context adaptation is performed server-side. This does not
preclude the possibility to use the same or additional strategies,
in order to handle context information on the client side, e.g. in
the application segment executing on a mobile device. Taking
into account the above the present survey focuses on approaches
4, 5 and 6.

With respect to the other approaches in the list, the first cate-
gory, i.e. middleware solutions and dedicated service platforms,
has been studied by Baldauf et al. (2007). In their survey they pres-
ent various aspects of context-awareness, e.g. in which ways can
data be collected and retrieved, what context models exist, how
is context categorized, etc., and focus on the characteristics of
the most representative context management architectures. There-
fore, we have not included this category in our survey. For more
details the reader can refer to the above survey and to the interest-
ing works of Context-awareness sub-structure (CASS) presented by
Fahy and Clarke (2004), Service-oriented Context-Aware Middle-
ware (SOCAM) found in Gu et al. (2004) and WildCAT presented
by David and Ledoux (2005).
Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
The second category, i.e. ontologies’ usage, exploits the principles
of the semantic web (Berners-Lee et al., 2001) to produce ontologies
that describe context information and its associations and provide
means for reasoning and inference. They are relying usually on Re-
source Description Framework (RDF) (W3C, 2004a) and Web Ontol-
ogy Language (OWL) (W3C, 2004b) semantic languages and are
combined with middleware or frameworks to provide more com-
plete context management. Such an ontology is accompanying the
SOCAM architecture, where context is represented in OWL and sup-
ports context classification, semantic operations and reasoning on
context information focusing on smart home environments (Ying
and Fu-yuan, 2006). We have also omitted this category from our
survey, because ontologies usually model context information spe-
cific to a chosen application domain (i.e. smart home environments
in the paper referenced above). Although the study of ontologies is
important, it would be more appropriate in a separate survey; its
inclusion would extend considerably the length of the paper.

Regarding rule-based reasoning approaches, a rule-based sys-
tem is a combination of a number of rules and a set of activation
conditions for these rules. They are simple in the sense that they
offer a similar functionality to if–then–else statements, but in a
more elaborated way. They provide a knowledge basis that drives
the activation of a behaviour based on the system knowledge that
the rules and the activation patterns offer. A significant approach
that integrates object-oriented programming and rule-based rea-
soning has been provided by D’Hondt and Jonckers (2004). Never-
theless, this category has not been analyzed further in the survey,
since only few and quite early studies from mainly one research
group present respective approaches specific to context manage-
ment for services (Daniele et al., 2007 and Costa et al., 2008). It will
be interesting to observe the solutions to be proposed in this direc-
tion in the near future.

With respect to approaches 4, 5 and 6, context can be handled
directly at the code level by enriching the business logic of the ser-
vice with code fragments responsible for performing context
manipulation, thus providing the service code with the required
adaptive behaviour. Source code level handling approaches usually
involve the extension of existing programming languages either at
the syntax level or by providing complementary external mecha-
nisms. Additionally, in many occasions, the delivery of a service re-
quires a more complicated software engineering process, which
passes through the stages of analysis and design prior to the actual
code development for the service. One such process, which relies
heavily on modeling, is the Model-Driven Engineering (MDE) par-
adigm (Schmidt, 2006) aiming at the definition of domain-specific
modeling languages, transformations between meta-models and
even the semi-automatic or even fully automatic production of
executable code. In the development process the focus is given
on the platform-independent modeling of the application that
drives the transformation to the application code. In this case the
question comes to mind regarding how context can be described
by appropriate models that can be combined with the respective
service models towards the production of an operational service.
Finally, context adaptation in services by means of message inter-
ception is performed by intercepting the incoming and outgoing
messages of a service and modifying them accordingly without
affecting either the core service and its functionality or the under-
lying middleware technology. However, message interception
techniques can also be applied to programming languages by inter-
cepting and modifying accordingly the application objects; again
without performing changes to the main application.

Wherever possible, taking also into account space restrictions,
we try to analyze and evaluate the use of approaches 4, 5 and 6
by means of a simple, but representative example, which is de-
tailed in the following section.
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/



Fig. 1. Tourist service example.

G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 3

ARTICLE IN PRESS
3. Running example

The example used throughout the paper is that of a service
mashup. A service mashup is the result of a service composition
process that ties together several, possibly independent, services.
The resulting mashup is a new service that offers previously non-
existent functionality by combining features that were already of-
fered by the component services. In the general case each compo-
nent service as well as the service mashup may be supported by a
different service provider.

The example in this paper is a tourist service that consists of
two sub-services (Fig. 1). The first sub-service offers operations
for presenting a greeting message to the user based on the follow-
ing contextual information: his nationality, which determines the
language used in the message, the time of day, which determines
the greeting scope of the message (morning, evening greeting,
etc.) and the current user location, which is used to add the name
of the corresponding city in the message. An attractions and activ-
ities recommendation forms the second sub-service. This service is
based on user preferences values that can be found in a stored user
profile (e.g. managed by a database system) and the current weath-
er information (outside temperature, season information, rain like-
lihood, etc.), which determines whether outdoor activities could be
taken into account in the attractions list.

It is a rather simple mashup; nevertheless, there is no loss of
generality since the context handling approaches presented in
the following sections can be equally applied to more complex ser-
vices. The tourist service is a typical case of a service offered by a
mobile operator. The greeting sub-service could have been devel-
oped in-house by the mobile operator, whereas the weather ser-
vice can be supported by a 3rd party service provider that has a
commercial agreement with the operator. The mobile operator
owns the user profile and exploits it, in order to execute the greet-
ing service; consequently, it forwards the user’s current location
(which is known to the mobile network) to the weather service.

4. Source code level approaches

The first significant attempt in source code level context han-
dling was made by Context-Oriented Programming (COP) (Keays
and Rakotonirainy, 2003). COP keeps the code skeleton context-
free and exploits context-dependent stubs for context manipula-
tion. Context is handled as a first-class construct of the program-
ming language while goals, open terms and stubs are used in
Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
conjunction with context to inject context-related behaviour into
the main execution skeleton. Open terms constitute gaps in pro-
gram’s logic that consist of an entity’s role (goal), a context infor-
mation (context) and optionally an event triggering the open
term execution. Context-filling is the procedure of selecting the
appropriate stub and binding it with the respective program gap,
thus providing the desired context-dependent behaviour. This pro-
cess requires an external entity, named stub repository, from
where the relevant code fragments are retrieved by the code skel-
eton when specific context-related conditions are met. COP has
been implemented as an extension to the Python programming
language, whose flexible scoping makes it suitable for this purpose.
Open terms and stub types are represented in XML and the con-
text-filling is based on these XML representations. It should be
noted that COP was not originally directed at context-aware ser-
vices as they are known today; however, it can be easily applied
to the design and development of code for a context-aware service
as it can be shown when considering the tourist service example.

Fig. 2 shows the code skeleton in Python where a call to the
fill gapðÞ routine triggers the context-filling procedure for the
open term. Default stubs are available for both the greeting and
attraction services, whereas other defined stubs express more spe-
cific context cases; e.g. stub g1 will be invoked for users in Madrid
coming from Germany when it is early in the day. Nevertheless, the
implementation of COP in Python is limited, since only statements
are regarded as open terms. Moreover, Python is an interpreted
language thus it is possible to modify the source code statements
once context-filling has taken place and then execute the service
without having to re-compile everything. In a different high-level
language (e.g., C++, Java) this would not be as easy. In the case of
Java this could have been achieved with load-time class transfor-
mation of Java class files (Kniesel and Costanza, 2001). Runtime
adaptation can also be approached possibly via a specially engi-
neered Java Virtual Machine (JVM) (Cutumisu et al., 2004). Both
approaches, however, are far more complex than using an inter-
preted language such as Python.

Another case of COP is the one discussed in (Costanza and Hir-
schfeld, 2005; Costanza et al., 2006) where the authors propose the
design of context-aware systems following a layered approach. The
term ‘‘layer” corresponds to a set of partial class and method def-
initions with specific behaviour. In order to use these layers, code
snippets are added to cause the layer activation (‘‘with” construct)
or deactivation (‘‘without” construct). This way, the program
behaviour can be dynamically modified at runtime in a context-
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/



Fig. 2. Service skeleton with open terms on the left, matching code stubs on the right.

4 G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
aware fashion. The system relies on a separate infrastructure to
capture context information from sensors and transport it to where
the code is running. According to the COP paradigm, context
dependencies are kept separate from the base program definition.

Instead of using an external mechanism as in the previous ap-
proach (through the stub repository), the context-filling process
takes place in the programming language provided that the neces-
sary context information has been retrieved through an appropri-
ate infrastructure and is ready to be used. The approach is
presented as an extension of the Common Lisp Object System
(CLOS) named ContextL. In more recent work (Hirschfeld et al.,
2008) the same layered mechanism was generalised, in order to
be combined with other programming languages like Java and
Squeak/Smalltalk. For the tourist example different layers need to
be defined to express all adaptation cases. Some of them are illus-
trated in Fig. 3 in the Java prototype of the approach, ContextJ*, e.g.
a GoodWeather layer that results in the inclusion of outdoor activ-
ities in the recommendation list when activated.

The above COP and layer activation solutions contain charac-
teristics of Feature-Oriented Programming (FOP), where the appli-
cation can be seen as the collaboration of individual features
expressed in requirements, design and implementation, and are
sufficient for addressing heterogeneous aspects in the sense that
different code fragments are applied to different program parts.
Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
For a more complex skeleton, the same context information
would be required in different parts of a service and would trig-
ger the invocation of additional operations in the same or even in
additional services. This way, context handling becomes a con-
cern that spans across several service units essentially crosscut-
ting into main service execution. A programming paradigm
aiming at handling such crosscutting concerns (referred to as as-
pects) is Aspect-Oriented Programming (AOP) (Elrad et al., 2001).
AOP has been implemented as an extension to popular program-
ming languages (AspectJ, AspectC++, etc.) where it introduces the
notions of joinpoints that define the points of the program where
aspects can introduce additional behaviour, pointcuts that define
expressions to detect joinpoints and pieces of advice that describe
the code to be applied on joinpoints. Aspects themselves consist
of a pointcut and the respective advice. In contrast to FOP, AOP
is ideal for homogeneous crosscutting concerns meaning that
the same code is applied to different points (Apel et al., 2006).
Using the AOP paradigm context information can be handled
through aspects that interrupt the main service execution, in or-
der to achieve service adaptation to context in a manner similar
to COP. This can be an interesting approach for the service engi-
neer especially when combined with methodologies like the
Theme approach (Baniassad and Clarke, 2004) that helps in iden-
tifying as early as possible which system functionalities consti-
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/



Fig. 3. Layer definitions for different cases for the Attractions (left) and Greeting (right) services.

G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 5

ARTICLE IN PRESS
tute aspects (crosscutting themes) and which base functionalities
(base themes).

Tanter et al. (2006) go one step further by proposing the adap-
tation of aspects to context in what is called context-aware as-
pects. This means that the use of aspects is driven by context; a
certain aspect may or may not be executed depending on its con-
text of use. The supplementary assumptions made in this ap-
proach is that the contexts guiding the aspect invocation can
have parameters (e.g. time and location as in the greeting service)
and that they can be combined with other contexts. However,
what is more important is that service behaviour can be affected
not only by current context values but also by past ones. This
time-related property of context-aware aspects is referred to as
context snapshotting.
Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
Context-aware aspects are supported by a framework that has
been implemented in Reflex (Tanter and Noye, 2005), an open
extension of Java, which provides the necessary constructs for
facilitating work on different AOP concepts. Reflex allows first-
class pointcuts for dynamic crosscutting. The idea is that hooksets
of Reflex – acting similarly to AOP pointcuts – can specify condi-
tions of when to send a specific message to a metaobject, achieving
this way context-based execution of code fragments or operations.
Contexts themselves are represented as objects that manifest a
method returning a Boolean value indicating their activation state.
Several dedicated language constructs are available in Reflex to ex-
press and show activation conditions based either on current or
past contexts, such as the abstract classes CtxActive and
SnapshotCtxActive. Returning to our example we can think of
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/



6 G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
a service containing a default message in English and some aspects
with customized greetings that depend on user’s language (e.g. if
the user is from a Castellan speaking city of Spain, the Spanish
greeting is invoked). Contexts in this case can also use the local
time as a parameter to further adapt the greeting message. There-
fore, the time parameter specifies the context state since it does
not remain the same for different invocations of the same service
(the same applies for location). Similarly, the attractions service
can return a default list of all indoor attractions at user’s location
that can be modified to include outdoor attractions in case of good
weather conditions. Fig. 4 contains the definitions of the
SpanishGreetingCtx and the GoodWeatherCtx context that
Fig. 4. Defining the code for the Spanish greeting and g

Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
extend the Context class to express more specific conditions, as
well as the pointcuts indicating the execution of the respective
aspects.

An example well suited to demonstrate the context snapshotting
feature proposed in context-aware aspects is that of the online
shop. We assume that a new shopping basket object is created in
an online shop each time the user logs in and that at each point
of time various offers may be active (active contexts). By exploiting
past contexts, special ratings can be offered to the customers pur-
chasing products depending on the context snapshot at login. In
other words, a context snapshot is taken during login and the rates
offered do not depend on the active discounts at the time of the
ood weather context using Context-aware Aspects.

service engineering: A survey. J. Syst. Software (2009), doi:10.1016/



G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 7

ARTICLE IN PRESS
purchase (current context), but on the special rates available when
the user logged in (past context). Context snapshotting can be fur-
ther enhanced by combining the service with a rule engine that can
reason over the set of past and current contexts. This is the ap-
proach employing Hybrid Aspects that combine features from AOP
and rule-based reasoning followed by D’Hondt and Jonckers
(2004) that can be adapted for context-aware development.

Similar history features are supported in the pointcut language
History-based Aspects using LOgic (HALO) (Herzeel et al., 2007)
implemented for Lisp that introduces pointcuts on program execu-
tion history expressed as joinpoint history and in (Allan et al.,
2005) where matching for traces (event patterns recognized in code
execution) was added as an extension to the AspectJ language.

A different programming technique that extends object-ori-
ented programming – called Isotope Programming Model (IPM) –
is presented by Saiyu et al. (2007). IPM states that object-oriented
programming can be changed so that object behaviour is not static,
but rather adaptable to different contexts. In that sense the code is
changed depending on its context of use and is kept separate from
the environmental information. Objects are defined by a number of
attributes and default methods as in the traditional object-oriented
model (main element) and a number of isotope elements. Isotope
elements describe the code structure in different environments.
They are comprised of a context block that specifies the execution
conditions and a behaviour part that contains the isotope ele-
ment’s methods. The most recent and most appropriate isotope
element is selected in each execution. If no such element exists,
the default method – if present – is called. New isotope elements
can be added or existing ones can be removed as the environments
change. The case of IPM is not demonstrated here further through
an example due to the lack of an extended description of the mech-
anism constructs in the published version of the approach.
5. Model-driven approaches

In the latest years model-driven engineering techniques are
being applied with success by many developers. That is the reason
why a significant number of recent context management ap-
proaches focuses on model-driven development of context-aware
applications and services. The modeling language used in the
majority of cases is the Unified Modeling Language (UML) (OMG,
2007). UML is the most widely adopted language for object model-
ing. It allows the introduction of profiles as extensions to the UML
metamodel metaclasses. Generally, profiles and metamodels are
techniques used for extending the semantics of a language. This
way the model representation can be adapted for use in different
domains of interest, facilitating at the same time the model trans-
formation to code, based on a number of profile stereotypes and
tags imported in the model. These techniques can also be exploited
in the framework of context-aware services. An overview of con-
text models – not limited to UML notation – is available from
Strang and Linnhoff-Popien (2004).

One of the first approaches towards modeling the interaction
between context and service for web services is found in Contex-
tUML (Sheng and Benatallah, 2005). ContextUML is a UML meta-
model, which extends the existing UML syntax by introducing
appropriate artifacts, in order to enable the creation of context-
aware service models. ContextUML-derived models consist of class
diagrams where classes correspond to context as well as service
constructs, while UML dependency and association relationships
express the interaction between the context classes and the
respective service ones. ContextUML can be used for expressing
(i) parameter injection that is the population of operation parame-
ters based on context and (ii) response manipulation that is manip-
ulation/modification of service responses based on context. The
Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
work in ContextUML has been extended by Prezerakos et al.
(2007) towards the direction of further decoupling context model
from service model design. Apart from class diagrams, UML activity
diagrams are used for modeling the core service logic flow in con-
junction with MDE transformation techniques and AOP. Indeed
many benefits can be gained by combining MDE with AOP as urged
also by Carton et al. (2007).

Yet another UML metamodel has been proposed by Ayed and
Berbers (2006). This UML metamodel supports structural, architec-
tural and behavioural adaptations of service design based on con-
text values. Structural adaptations are concerned with the
extension of classes with additional attributes and methods,
whereas architectural adaptations are related with the optional
instantiation of objects. Behavioural adaptations extend the UML
sequence diagram, in order to support the inclusion of several se-
quences that can be optionally activated. A UML profile towards
Model-driven Development of context-aware applications similar
to ContextUML can be found in (Grassi and Sindico, 2007). In this
profile context is categorized in (i) state-based context that charac-
terizes the current situation of an entity and (ii) event-based con-
text that represents changes in an entity’s state. Constraints are
used on both context types to trigger various invocations: state
constraints refer to specific points in time, while event constraints
exploit historical data of context events. Similarly to the previous
metamodel, context information can be either used to be mapped
to specific values or modify the structure or the behaviour of the
application. Monitor elements are responsible for retrieving various
context information, while Adapters adapt the application based on
this information e.g. by causing additional actions to be performed,
etc. This UML model is mapped to AspectJ code, where Adapters
and Monitors are implemented as aspects.

Modeling techniques can also be used during the software
requirements stage of context-aware applications. This is the case
of the Context-Oriented Domain Analysis (CODA) by Desmet et al.
(2007), which is a systematic approach for gathering requirements
of context-aware systems using respective models and can be sub-
sequently mapped to decision tables.

Another important issue of context-awareness is privacy guar-
antees needed to protect sensitive user data and its dissemination.
Privacy and quality issues have been taken into account in the Con-
text Modeling Profile (CMP) of Simons (2007). The profile consists
of a number of stereotypes used for representing context items,
associations between them and with the context source and con-
text quality (which can be userprovided, sensed and derived). Con-
text validity shows how frequently the context changes, whereas
access associations express who has access to the specific context
value (e.g. all, specific groups, etc.). The profile is combined with
a number of constraints expressing restrictions on context repre-
sentation expressed in the Object Constraint Language (OCL)
(OMG, 2006). The association between context and privacy is also
studied by Henricksen et al. (2005). The authors extend their Con-
text Modeling Language (CML) (Henricksen et al., 2002) to include
privacy preferences. CML is not based on UML, but on Object-Role
Modeling (ORM) and describes context information in terms of ob-
ject and fact types. Objects represent entities (e.g. person, device),
while facts refer to associations and constraints between these ob-
jects (e.g. person X ‘‘is using” device Y). Ownership is defined for
facts and objects; three classes of ownership are used for objects,
which can be overridden by fact’s ownership, i.e. rules of owner-
ship defined for facts. The ownership is combined with user pri-
vacy preferences over context elements. Preferences are
expressed in pairs of scope – referring to the context where the
preference is to be applied – and scoring expressions – stating
whether the context value can be disclosed or not.

Service and context models created using UML and other meta-
models can be converted to high-level language source code by
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/



Fig. 5. Context model and dependencies for the tourist example.

8 G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
means of either commercial or open source tools responsible for
performing the transformation from model to code (e.g. AndroM-
DA2, openMDX3).

Returning to the tourist service example, the dependencies be-
tween the service and the context model in ContextUML notation
representing UML modeling are shown in Fig. 5. The web service
interfaces are depicted using the <<PortType>> stereotype. Some
of these WSs are also used for the context information retrieval
(<<SourceAssignment>> dependency), whereas the context
dependencies are expressed with <<ContextBinding>> and
<<ContextTriggering>>. It would be too optimistic to assert
that the process of code generation from models can become com-
pletely automatic and that the developer’s role lies only on service
design. But overall, the development effort can be reduced signifi-
cantly, since the code structure is generated along with a useful
amount of code and the developer may need to intervene only in
specific code sections. Corresponding support mechanisms at the
code level also have to be present, i.e. the target platform specifica-
tion needs to be available. The fact that the service author does not
2 http://www.andromda.org
3 http://www.openmdx.org/

Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
have to be fully aware of how those mechanisms should be imple-
mented can be perceived by many developers as an advantage.

6. Message interception

Solutions based on message interception are interesting be-
cause they can be applied to WS, which constitute the most popu-
lar technology for service-oriented applications on the web and are
the most promising candidate also for pervasive environments
mainly due to their interoperability properties. Of course it is not
limited only to web services, but can be exploited in the framework
of other middleware technologies, like Common Object Request
Broker Architecture (CORBA) or Simple Middleware Independent
LayEr (SMILE) by Salsano et al. (2008) or even in interception of ob-
jects and input and output messages in programming languages.

In the latter case of programming languages, less recent ap-
proaches have presented the interception of messages exchanged
between objects as in the language independent composition fil-
ters (CF) approach by Aksit et al. (1993) describing how messages
pass through filters where they are processed until they are dis-
carded or dispatched, i.e. activated again. A mechanism more spe-
cific to message modification is supported by the work in (Bosch,
1995), where the Layered Object Model (LayOM) implemented in
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/

http://www.andromda.org
http://www.openmdx.org/


Fig. 6. Examples of SOAP Envelopes with context extensions for location, time, user preferences and weather.

4 http://ws.apache.org/axis2/

G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 9

ARTICLE IN PRESS
C++ adds layers that perform different actions on the messages.
Both these approaches constitute interesting attempts and could
be exploited – through some necessary adaptation – in message
modification for context-awareness support in code execution.

In the web services case, service requests and responses travel
back and forth between WS clients and web services encapsulated
in envelopes formulated according to the Simple Object Access
Protocol (SOAP). Context information related to a specific service
can be handled by (i) defining namespaces to allow SOAP messages
to carry context information in the SOAP headers and (ii) intercept-
ing these messages on the way and process the embedded context
information, leaving the context handling – at a great extent – out-
side web services themselves (Keidl and Kemper, 2004). More spe-
cifically, all types of context information can be included as SOAP
extensions in message headers. The extensions include context
blocks containing a unique context identifier and a context value.
Considering again our tourist example the corresponding SOAP
messages for each service are depicted in Fig. 6. The language, loca-
tion and address for the greeting and the weather and activity
interest information for the attractions service are visible in the
message headers.

Context manipulation in this framework is automatically per-
formed through handlers either included as context plugins in
the framework or available remotely as dedicated web services.
The handlers intercept SOAP messages exchanged during service
execution and modify context extensions accordingly. This pro-
cessing of context information can be performed either on the cli-
ent or on the web service side using a specific Context API. In order
to specify who modifies which information, context processing
instructions are provided, which include references to services
responsible for context processing and additional information on
how the processing is performed. This approach provides for sub-
stantial flexibility in handling context processing independently
from the core service logic. The context exchange and processing
mechanisms described can be exploited in the WS code to perform
the necessary actions leading to context-aware WS provision.
Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
A message interception approach for web service context-
awareness is also proposed by Prezerakos et al. (2007), where
the SOAP messages are modified based on advices applied during
the message interceptor execution. The respective aspects can be
turned on and off taking into account the current adaptation needs.
In (Kapitsaki et al., 2008) a handler for the Axis2 web service
framework4 has been implemented for the interception of SOAP
messages. The handler is responsible for the invocation of plugins
loaded on runtime based on an XML configuration file (handler.xml)
that associates web service operations with specific plugins. Plugins
- separated to inPlugins for the modification of requests and outPlu-
gins for the responses - retrieve the necessary context information by
communicating with context sources exposed as web services and
then perform the message modification based on this information.
The modification may include request parameter replacement, selec-
tion of the correct operation to be performed based on context val-
ues, etc. Assuming the two sub-services (Fig. 6) and the
corresponding context sources are available as WSs the configura-
tion file for the tourist service example would be as depicted in
Fig. 7. The greeting service is associated with one InPlugin that will
modify the SOAP request, whereas the attractions recommendation
service is associated with two plugins, one for each message
direction.

A generic model with inclusion of context information in mes-
sages not bound to specific technologies is proposed by the ab-
stract Context-Dependent Role Model (CDR) presented in
(Vallejos et al., 2007). In this approach, actors, which can be de-
fined as interacting nodes in a distributed environment, react to
exchanged messages by adopting a certain role at each case. This
is performed through the context-dependent role selector, a dedi-
cated entity within the actor that selects the appropriate role based
on context information regarding the message sender and receiver.
Context information is included in the messages by the context ref-
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/

http://ws.apache.org/axis2/


Fig. 7. Handler.xml configuration file for the tourist example.

10 G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
erence proxy. The context reference captures the outgoing mes-
sages and may add context data to the message before sending it
to the receiver based on rules that indicate in which conditions
context information is added.

The use of web services in the management of context informa-
tion is not limited to the presented approaches. In (Arruda et al.,
2003) the Context Kernel web service has been implemented to al-
low applications to store and exchange context information. Other
web services can exploit the retrieval and storage mechanism of
the context kernel to gain context information and integrate it in
their functionality. Nevertheless, privacy and security issues
emerge in the above cases by having context information travel
back and forth between different connection points and certainly
further work in this direction is highly desirable.

7. Comparison/discussion

From the study of the field of context-awareness and the differ-
ent issues addressed in the literature we have concluded that use-
ful requirements for efficient context-aware service engineering
are:

� Decoupling from service/application logic: separation between the
management of the main service engineering process, and the
context adaptation mechanism.

� Provision of means for combination and alterations between differ-
ent models: since user and provider needs change, the develop-
ment of context-aware services should be flexible enough to
allow the replacement of context or even service models and
not be tightly coupled with specific models.

� Handling of past and composite context data: historic data needs
to be taken into account as well, whereas aggregated and
derived information coming from simple context values should
also be supported.

� Support for user data protection: privacy guarantees need to be
taken into account in the sensitive context-aware world.
Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
In this section we show in which degree the above approaches
fulfill these main requirements based on the conclusions we have
drawn through our survey study. For this reason a summarized
presentation of the most representative context-aware approaches
in service engineering is illustrated in Table 1.

We observe that all approaches succeed in decoupling the con-
text management from the business logic in a higher or lower de-
gree. Context representation models can be found mainly in
model-based approaches, where the use of different models by
exploiting generic purpose or domain-specific modeling languages
is possible. However, in code-based approaches the model is al-
most integrated in the approach, depends on the programming
language used and cannot be seen independently. The same is
the case for message interception techniques. Unfortunately the
majority of approaches do not deal with historical and privacy is-
sues, which are important aspects for this kind of services. Differ-
ent implementation languages or underlying frameworks and
middleware are adopted in each approach, but in most cases a cer-
tain degree of independence is maintained for the service develop-
ment (i.e. the adaptation takes place without affecting the
underlying middleware technology). The adaptation may take
place on either side (client or provider), whereas there are also
cases where both are seen as equivalent actors (this happens for
example in the context-dependent role model).

As a second step we attempt a more generic comparison of the
solutions categories, since an important question for the devel-
oper of context-aware services is whether there are specific
advantages and disadvantages that would advocate the use of a
specific approach for certain types of services. In order to point
out the strengths and weaknesses of each approach, the ap-
proaches in question are compared in Table 2 according to the
following criteria that are meaningful for the service developer
when choosing a service engineering approach. These criteria
were selected from software engineering evaluation criteria used
in other studies (Kan, 2002), as well as from our own
experience:
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/



Table 2
Evaluation Criteria for the Context Handling Categories.

Flexibility Refactoring
ability

Ease of
use

Existing system adaptation Context Model Type Decoupling from
business logic

Source code level
handling

High Limited Medium Depends on existing system
architecture

OOP-based (including
XML-based)

Depends on programming
language

Model-based
approaches

Medium High (assuming
code
re-generation)

Medium Low (not possible if the
system has not been modeled)

UML/MOF Models (mainly) High

Message
interception

Medium High High Medium External or embedded in
messages

High

Table 1
A summary with the basic Characteristics of the presented Approaches.

Context
model

Decoupling
from
business logic

Privacy
issues
support

Historical
data
support

Underlying framework/
Implementation

Context
adaptation
side

COP (Keays and Rakotonirainy, 2003) Impl.-
based

Partial No No Python Server

Layer activation (Hirschfeld et al., 2008) Impl.-
Based

Partial No No CLOS or Java or Squeak/
Smalltalk

Server

Context-aware aspects (Tanter et al., 2006) Impl.-
based

Partial No Yes Reflex Server

IPM (Saiyu et al., 2007) Impl.-
based

Partial No No OOP Server

Hybrid aspects (D’Hondt and Jonckers 2004) Impl.-
based

Yes No Partial AspectS Unspecified

ContextUML+Aspects (Sheng and Benatallah, 2005), (Prezerakos
et al., 2007)

UML Yes No No Web services Client

Grassi development (Grassi and Sindico, 2007) UML Yes No Yes AspectJ Unspecified
CML, CMP(Simons, 2007), (Henricksen et al., 2002) ORM, UML – Yes – – –
Towards adaptable web services (Keidl and Kemper, 2004) UDDI

tModel
Yes No No Web services Both

Handler for web services (Kapitsaki et al., 2008) Impl.-
based

Yes No No Web services (Axis2) Server

Context-dependent Role model (Vallejos et al., 2007) Impl.-
based

Partial Yes No AmbientTalk Both

5 http://www.springframework.org/

G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 11

ARTICLE IN PRESS
� Flexibility: The degrees of freedom that the context adaptation
mechanism provides to the developer.

� Refactoring ability: How easy is it to redesign the service, if there
are modifications in either the business logic or the context han-
dling logic?

� Ease of use: How easy is it for a developer, not very familiar with
the specific context adaptation mechanism, to use it?

� Existing system adaptation: How easy would it be to apply the
specific context adaptation mechanism to an existing system?

� Context model type: Is the mechanism bound to a specific context
metamodel?

� Decoupling from business logic: What is the degree of indepen-
dence between context information and service logic?

Source code level handling gives more freedom and hence flex-
ibility to the service developer that can implement different kinds
of adaptation to context, based on the requirements of the applica-
tion under development, but inherits the strengths and limitations
of the programming language used regarding the other criteria.
Moreover, it is quite difficult for a developer to apply these princi-
ples in his/her programming language of choice since some fea-
tures (e.g. aspects) may not be supported in that language. In all
cases, a certain degree of familiarization with the adopted pro-
gramming language is necessary.

Model-driven approaches profit from the advantages of MDE,
but require an overall and coherent system modeling that has to
be kept updated all times, where the service logic and context
models can be introduced. This is not a drawback per se but
Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware service engineering: A survey. J. Syst. Software (2009), doi:10.1016/
j.jss.2009.02.026
MDE is best suited for developers with the ability to move between
models and from model to code and vice versa without problems.
On the other hand, message interception approaches intervene less
in the developer’s work with respect to the business logic, but re-
quire several system modifications in terms of generating and con-
suming messages to work properly. Furthermore, the message
interception mechanism needs to be incorporated in the system;
therefore, message interception works better in the presence of a
middleware platform where such mechanisms accompany the
platform by default.

Although we have divided the approaches in the above main
categories, various aspects of context-aware service support can
be used at the same time leading to composite approaches, e.g. a
model-based approach can be used to generate code that targets
a system that relies on message interception. Combination of these
aspects into more comprehensive solutions is a very interesting
area for future work. Currently there is some interesting work un-
der way in the Java community regarding lightweight enterprise
frameworks, such as Spring5, and languages dedicated to services,
such as ServiceJ (Labey et al., 2007), that can be used for context-
aware service creation. Nevertheless, we still have a great distance
to cover, since all approaches fulfill partially the requirements men-
tioned in the beginning of the section but none fulfills them all.
Moreover, historical and aggregated data as well as privacy issues
are only addressed in a small subset of the approaches.

http://www.springframework.org/


12 G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx

ARTICLE IN PRESS
8. Conclusions and emerging issues

In this paper we presented a survey on methodologies and solu-
tions for context-aware service engineering. We have described a
variety of proposed solutions based on the three main categories
that we considered of special interest to service engineering and
have not been presented in the literature extensively, namely
source code level handling, model-based and message interception
approaches. A comparison of the presented work results has ex-
posed the major advantages and disadvantages of each case.

Our main conclusion is that the context handling should be left
– if possible – completely outside the service itself in the sense that
service logic code should be distinct from the code that performs
context adaptation. Nevertheless, services and service requesters
must be unaware of the existence of such mechanism and the con-
text information must be available and up to date any time. Fur-
thermore, we find model-based approaches more suitable for
service engineering in general, since they profit from the benefits
of the MDE paradigm that should not be neglected. Their combina-
tion with the novel ideas presented at the implementation level
and basically in code-based approaches would lead to interesting
results. Our ongoing work is towards the direction of providing a
complete context-aware service engineering methodology exploit-
ing web services using MDE techniques and message interception.
We are focusing on the specification of the transformation proce-
dures and the complete independence between the business logic
and the context mechanisms.

A general observation is that the service engineering commu-
nity still lacks a set of universally accepted basic design and devel-
opment principles that can lead to a uniform approach towards
efficient context-aware service development. Moreover, the issue
of privacy and security is of vital importance and needs to be prop-
erly addressed. Indeed, context information and management is re-
lated to sensitive user data, such as personal information, current
activity, ongoing and past transactions, etc. that should not be re-
vealed unless the end-user has expressed such preference. Unfor-
tunately, privacy is not adequately - or not at all - addressed by
the majority of the approaches. Combination with Role Based Ac-
cess Control (RBAC) techniques could prove useful (Ni et al.,
2007).It is our belief that the focus of the future work on context
solutions should also be put towards this direction.

Acknowledgements

Georgia Kapitsaki is supported by a Greek State Scholarships
Foundation grant. This work has been partially supported by the
European Union co-funded IST project Simple Mobile Services
(SMS) (http://www.ist-sms.org).

References

Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A., 1993. Abstracting object
interactions using composition filters. Proceedings of the Workshop on Object-
Based Distributed Programming 791, 152–184.

Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O., Moor,
O.d., Sereni, D., Sittampalam, G., Tibble, J., 2005, Adding trace matching with
free variables to AspectJ. In: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Languages, and
Applications, San Diego, CA, USA, pp. 345–364.

Apel, S., Leich, T., Saake, G., 2006. Aspectual mixin layers: aspects and features in
concert. In: Proceedings of the 28th International Conference on Software
Engineering, Shanghai, China, pp. 122–131.

Ayed, D., Berbers, Y., 2006. UML profile for the design of a platform-independent
context-aware applications. In: Proceedings of the First Workshop on Model
Driven Development for Middleware (MODDM ‘06), Melbourne, Australia, pp.
1–5.

Arruda Jr., C.R.E., Neto, R.B., Pimentel, M., da, G., 2003. Open context-aware storage
as a web service. International Conference on Distributed Systems Platforms
and Open Distributed Processing. Rio de Janeiro, Brazil. 81–87.
Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
Baldauf, M., Dustdar, S., Rosenberg, F., 2007. A survey on context-aware systems.
International Journal of Ad Hoc and Ubiquitous Computing 2 (4), 263–277.

Baniassad, E., Clarke, S., 2004. Theme: an approach for aspect-oriented analysis and
design. Proceedings of the International Conference on Software Engineering
(ICSE’04), 158–167.

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The Semantic Web. Scientific American,
34–43.

Bosch, J., 1995. Language support for design patterns. Research Report 11, 1103–
1581.

Carton, A., Clarke, S., Senart, A., Cahill, V., 2007. Aspect-oriented model-driven
development for mobile context-aware computing. In: Proceedings of the First
International Workshop on Software Engineering for Pervasive Computing
Applications, Systems, and Environments, (SEPCASE ‘07), p. 191.

Chen, G., Kotz, D., 2000. A Survey of Context-Aware Mobile Computing Research.
Technical Report TR2000-381, Dartmouth College.

Costanza, P., Hirschfeld, R., 2005. Language constructs for context-oriented
programming: an overview of contextL. In: Proceedings of the 2005
Conference on Dynamic Languages Symposium, San Diego, California, pp. 1–10.

Costanza, P., Hirschfeld, R., Meuter, W., 2006. Efficient layer activation for switching
context-dependent behavior. In: Proceedings of Joint Modular Languages
Conference (JMLC’06). Springer Verlag, Oxford, England, pp. 84–103.

Cutumisu, M., Chan, C., Lu. P., Szafron, D., 2004. MCI-java: a modified java virtual
machine approach to multiple code inheritance. In: Proceedings of the Third
Conference on Virtual Machine Research and Technology Symposium, San Jose,
California, vol. 3(2–2).

D’Hondt, M., Jonckers, V., 2004. Hybrid aspects for weaving object-oriented
functionality and rule-based knowledge. In Proceedings of the Third
International Conference on Aspect-oriented Software Development
(AOSD’04), Lancaster, UK, pp. 132–140.

Daniele, L., Dockhorn Costa, P., Ferreira Pires, L., 2007. Towards a rule-based
approach for context-aware applications. In: Proceedings of the 13th Open
European Summer School and IFIP TC6.6 Workshop (EUNICE’07), Enschede, The
Netherlands, pp. 33–43.

David, P.-C., Ledoux, T., 2005. WildCAT: a generic framework for context-aware
applications. In: Proceedings of the Third International Workshop on
Middleware for Pervasive and Ad-hoc Computing (MPAC’05), Grenoble,
France, pp. 1–7.

Desmet, B., Vallejos, J., Costanza, P., Meuter, W.D., D’Hondt, T., 2007. Context-
oriented domain analysis. In: Proceedings of the Sixth International and
Interdisciplinary Conference on Modeling and Using Context (CONTEXT’07).
Springer Verlag, Denmark, pp. 178–191.

Dey, K., Abowd, G.D., 2000. Towards a Better Understanding of Context and Context-
Awareness, Workshop on The What, Who, Where, When, and How of Context-
Awareness, as part of the 2000 Conference on Human Factors in Computing
Systems (CHI’00). The Hague, The Netherlands.

Dockhorn Costa, P., Andrade Almeida, J.P., Ferreira Pires, L., Van Sinderen, M.J., 2008.
Evaluation of a rule-based approach for context-aware services. In: Proceedings
of the IEEE Global Communications Conference (GLOBECOM 2008), November
30–December 04, 2008. New Orleans, LA, USA.

Elrad, T., Filman, R.E., Bader, A., 2001. Aspect-oriented programming.
Communications of the ACM 44 (10), 28–32.

Fahy, P., Clarke, S., 2004. CASS – Middleware for Mobile Context-Aware
Applications, Workshop on Context Awareness, MobiSys 2004.

Grassi, V., Sindico, A., 2007. Towards model driven design of service-based context-
aware applications. In: International Workshop on Engineering of Software
Services for Pervasive Environments: In Conjunction with the Sixth ESEC/FSE
joint meeting, Dubrovnik, Croatia, pp. 69–74.

Gu, T., Pung, H.K., Zhang, D.Q., 2004. A middleware for building context-aware
mobile services. Vehicular Technology Conference 5, 2656–2660.

Henricksen, K., Indulska, J., Rakotonirainy, A., 2002. Modeling Context Information
in Pervasive Computing Systems, Pervasive Computing, LNCS, Springer Verlag,
vol. 2414, pp. 79-117.

Henricksen, K., Wishart, R., McFadden, T., Indulska, J., 2005. Extending context
models for privacy in pervasive computing environments. In: Proceedings of the
Third International Conference on Pervasive Computing and Communication
Workshops (PerCom’05 Workshops), pp. 20–24.

Herzeel, C., Gybels, K., Costanza, P., Roover, C.D., D’Hondt, T., 2007. Forward chaining
in HALO: an implementation strategy for history-based logic pointcuts.
Proceedings of the 2007 International Conference on Dynamic languages: In
Conjunction with the 15th International Smalltalk Joint Conference 286, 157–
182.

Hirschfeld, R., Costanza, P., Nierstrasz, O., 2008. Context-oriented programming.
Journal of Object Technology 7 (3), 125–151 (March/April).

Kan, S.H., 2002. Metrics and Models in Software Quality Engineering, second ed.
Addison-Wesley Professional, ISBN-10: 0-201-72915-6.

Kapitsaki, G.M., Kateros, D.A., Venieris, I.S., 2008. Architecture for provision of
context-aware web applications based on web services. In: Proceedings of IEEE
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC’08), Cannes, France, pp. 1–5.

Keays, R., Rakotonirainy, A., 2003. Context-oriented programming. In: Proceedings
of the Third ACM International Workshop on Data Engineering for Wireless and
Mobile Access, San Diego, CA, USA, pp. 9–16.

Keidl, M., Kemper, A., 2004. Towards context-aware adaptable web services. In:
Proceedings of the 13th International World Wide Web Conference (WWẂ04),
New York, NY, USA, pp. 55–65.
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/

http://www.ist-sms.org


G.M. Kapitsaki et al. / The Journal of Systems and Software xxx (2009) xxx–xxx 13

ARTICLE IN PRESS
Kniesel, G., Costanza, P., 2001. JMangler – A framework for load-time transformation
of java class files. In: Proceedings of the First IEEE International Workshop on
Source Code Analysis and Manipulation, Florence, Italy, pp. 98–108.

Labey, S. De, Dooren, M. van and Steegmans, E., 2007. ServiceJ a java extension for
programming web services interactions. In: Proceedings of the IEEE
International Conference on Web Services (ICWŚ07), pp. 505–512.

Ni, Q., Trombetta, A., Bertino, E., Lobo, J., 2007. Privacy-aware role based access
control. In: Proceedings of the 12th ACM Symposium on Access Control Models
and Technologies, Antipolis, France, pp. 41–50.

OMG, 2006. Object Constraint Language OMG Available Specification, v. 2.0, <http://
www.omg.org/docs/formal/06-05-01.pdf>.

OMG, 2007. Unified Modeling Language (OMG UML) Infrastructure, v.2.1.2, <http://
www.omg.org/docs/formal/07-11-03.pdf>.

Prezerakos, G. N., Tselikas, N., Cortese, G., 2007. Model-driven composition of context-
aware web services using ContextUML and aspects, In: Proceedings of the IEEE
International Conference on Web Services 2007 (ICWS’07), pp. 320–329.

Saiyu, Q., Min, X., Yong, Q., 2007. Isotope programming model for context aware
application. International Journal of Software Engineering and Its Applications 1
(1), 53–66.

Salsano, S., Bartolomeo, G., Trubiani, C., Blefari Melazzi, N., 2008. SMILE, a simple
middleware independent layer for distributed mobile applications. In:
Proceedings of the IEEE Wireless Communications and Networking
Conference (WCNC’08), pp. 3039–3034.

Sheng, Q.Z., Benatallah, B., 2005. ContextUML: a UML-based modeling language for
model-driven development of context-aware web services. In: Proceedings of
the International Conference on Mobile Business (ICMB’05), pp. 206–212.

Schmidt, A., Beigl, M., Gellersen, H.-W., 1999. There is more to context than location.
Computers and Graphics 23 (6), 893–901.

Schmidt, D.C., 2006. Model-driven engineering. IEEE Computer 39 (2), 25–31 (Cover
Feature).

Simons, C., 2007. CMP: a UML context modeling profile for mobile distributed
systems. In: Proceedings of the 40th Annual Hawaii International Conference on
System Sciences (HICSS’07), p. 289b-289b.

Strang, T., Linnhoff-Popien, C., 2004. A context modeling survey. UbiComp First
International Workshop on Advanced Context Modelling, Reasoning and
Management, Nottingham, pp. 34–41.

Tanter, E., Noye, J., 2005. A versatile kernel for multi-language AOP. In: Proceedings
of the ACM SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE’05). LNCS, Springer Verlag, pp. 173–188.

Tanter, E., Gybels, K., Denker, M., Bergel, A., 2006. Context-aware aspects. In:
Proceedings of Software Composition 2006, LNCS 4089, Springer Verlag, pp.
227–242.

Vallejos, J., Ebraert, P., Desmet, B., Cutsem, T. V., Mostinckx, S., Costanza, P. (2007).
The context-dependent role model. In: Proceedings of the International
Please cite this article in press as: Kapitsaki, G.M., et al. Context-aware
j.jss.2009.02.026
Conference on Distributed Applications and Interoperable Systems (DAIS’07),
LNCS 4531, Springer Verlag, vol. 4531, pp. 1–16.

W3C, 2004a. RDF/XML Syntax Specification (Revised), <http://www.w3.org/TR/rdf-
syntax-grammar/>.

W3C, 2004b. OWL Web Ontology Language Overview, <http://www.w3.org/TR/owl-
features/>.

Ying, X., Fu-yuan, X., 2006. Research on context modeling based on ontology.
International Conference on Computational Intelligence for Modelling, Control
and Automation, and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce, 188.

Georgia M. Kapitsaki is a research associate working towards a PhD at the National
Technical University of Athens (NTUA). Her research interests include context-
aware applications, service-oriented architectures as well as mobile internet and
software engineering. She received her Dipl.-Ing from the School of Electrical and
Computer Engineering of NTUA in 2005.

Dr. George N. Prezerakos is an Associate Professor in the Electronic Computing
Systems Department of the Technological Education Institute (TEI) of Piraeus. He
holds a Dipl.-Ing. and a Ph.D. in electrical and computer engineering, both from
NTUA. His research interests include context-aware applications and model-driven
development. Prior to joining the Academia, he has held various positions in the
Greek software and telecoms industry and in the Greek Telecommunications and
Posts Commission (EETT).

Dr. Nikolaos D. Tselikas is a lecturer in University of Peloponnese (UoP). His
research interests include service-oriented architectures, distributed systems as
well as middleware and software engineering. He received both his Dipl.-Ing.
degree and his PhD from the School of Electrical and Computer Engineering of NTUA
in 1999 and 2004, respectively.

Dr. Iakovos S. Venieris is a Professor in the School of Electrical and Computer
Engineering of NTUA. His research interests are in the fields of broadband com-
munications, Internet, mobile networks, Intelligent Networks, internetworking,
signaling, service creation and control, distributed processing, agents technology,
and performance evaluation. He holds a Dipl.-Ing. degree from the University of
Patras and a Ph.D. degree from NTUA. He is a reviewer for several IEEE, ACM,
Elsevier, and John Wiley journals, associate editor for the IEEE Communications
Letters, member of the editorial staff of Computer Communications (Elsevier), and
has been guest editor in the IEEE Communications Magazine.
service engineering: A survey. J. Syst. Software (2009), doi:10.1016/

http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/docs/formal/07-11-03.pdf
http://www.omg.org/docs/formal/07-11-03.pdf
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

	Context-aware service engineering: A survey
	Introduction
	Categories of context solutions
	Running example
	Source code level approaches
	Model-driven approaches
	Message interception
	Comparison/discussion
	Conclusions and emerging issues
	Acknowledgements
	References


